Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): Yuping Sun; Qixing Zhang; Kaili Li; Yinuo Huo; Yongming Zhang
Publication Date: 2022

Forest fires are becoming increasingly severe and frequent due to global climate change. Trace gases emitted from forest fires significantly affect atmospheric chemistry and climate change on a regional and global scale. Forest fires occur frequently in Southwest China, but systematic studies on trace gas emissions from forest fires in Southwest China are rare. Leaves of seven typical vegetation fuels based on their prominence in forest fires consumption in Southwest China were burned in a self-designed combustion device and the emission factors of eighteen trace gases (greenhouse gases, non-methane organic gases, nitrogenous gases, hydrogen chloride, and sulfur dioxide) at specific combustion stages (flaming and smoldering) were determined by using Fourier transform infrared spectroscopy, respectively. The emission factors data presented were compared with previous studies and can aid in the construction of an emission inventory. Pine needle combustion released a greater amount of methane in the smoldering stage than other broadleaf combustion. Peak values of emission factors for methane and non-methane organic gas are emitted by the smoldering of vegetation (Pinus kesiya and Pinus yunnanensis), which is endemic to forest fires in Southwest China. The emission factor for oxygenated volatile organic compounds (OVOCs) in the smoldering stage is greater than the flaming stage. This work established the relationship between modified combustion efficiency (MCE) with emission factors of hydrocarbons (except acetylene) and OVOCs. The results show that exponential fitting is more suitable than linear fitting for the seven leaf fuels (four broadleaf and three coniferous). However, the emission factors from the combustion of three coniferous fuels relative to all fuels are linear with MCE. Findings demonstrated that different combustion stages and fuel types have significant impacts on the emission factors, which also highlighted the importance of studying regional emissions.

Online Links
Citation: Sun, Yuping; Zhang, Qixing; Li, Kaili; Huo, Yinuo; Zhang, Yongming. 2022. Trace gas emissions from laboratory combustion of leaves typically consumed in forest fires in southwest China. Science of The Total Environment 846:157282/

Cataloging Information

Topics:
Regions:
Keywords:
  • China
  • combustion stage
  • emission factors
  • forest fires
  • trace gases
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 66184