Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Report
Author(s): Randi R. Jandt; Eric A. Miller; Benjamin M. Jones
Publication Date: June 2021

Data on fire effects and vegetation recovery are important for assessing the impacts of increasing temperatures and lightning on tundra fire regimes and the implications of increased fire in the Arctic for wildlife and ecosystem processes. This report summarizes information collected by the Bureau of Land Management (BLM), U.S. Geological Survey, and University of Alaska Fairbanks, as well as other cooperators between 2008 and 2017 on the effects of 2007 tundra fires on Alaska’s North Slope.

We monitored vegetation, soil properties, thaw depths, and collected repeat photos on a set of 23 burned transects and 11 unburned reference transects periodically (N=5 visits) between 2008 and 2017 on the Anaktuvuk River and adjacent Kuparuk River fires. Post-fire regrowth of vegetation was rapid for some species such as cottongrass (Eriophorum vaginatum) and expansive carpets of fire mosses and liverworts that developed after the first year on severely burned areas. Relative to unburned tussocks, tussocks that experienced burning inside the fire perimeter continue to grow and flower more vigorously after ten years, suggesting a continued increase of soil nutrients, competitional release, or a response to warming at root-level. Other species were declining (Sphagnum mosses) or virtually absent (lichens) in the burned areas. Post-fire accumulation of organic material over the first decade was about 5 cm of moss and plant litter. This layer of recently cast fine fuel along with sedge leaf litter carried two small lightning-ignited reburns in early-2017. Shrubs re-established more slowly than herbaceous species: by the tenth year post-fire, cover of deciduous shrubs on burned transects equaled reference transects but that of ericaceous subshrubs still lagged. Species of tall willow appeared to be responding by increases in stature and colonization of thermokarst-affected terrain. Other studies suggest that tundra north of the Brooks Range is responding to climate change with widespread expansion of and dominance by tall shrubs in the absence of fire. Our observations from this burn, as well as at several other older burns, suggest that fire greatly accelerates this succession. Shifts in community species composition seem likely for many years to come in the burn area.

 

Online Links
Link to this document (15.3 MB; pdf)
Citation: Jandt, Randi R.; Miller, Eric A.; Jones, Benjamin M. 2021. Fire effects 10 Years after the Anaktuvuk River Tundra Fires. BLM-Alaska Technical Report 64. Anchorage, AK: BLM Alaska Public Information Center. 54 p.

Cataloging Information

Topics:
Regions:
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 63995